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1 Introduction

This introduction to graph theory focuses on well-established topics, covering
primary techniques and including both algorithmic and theoretical problems.
The algorithms are presented with a minimum of advanced data structures and
programming details. This thoroughly corrected 1988 edition provides insights
to computer scientists as well as advanced undergraduates and graduate stu-
dents of topology, algebra, and matrix theory. Fundamental concepts and nota-
tion and elementary properties and operations are the first subjects, followed by
examinations of paths and searching, trees, and networks. Subsequent chapters
explore cycles and circuits, planarity, matchings, and independence. The text
concludes with considerations of special topics and applications and extremal
theory. Exercises appear throughout the text.

Graph theory is now used today in the physical sciences, social sciences,
computer science, and other areas. Introductory Graph Theory presents a non-
technical introduction to this exciting field in a clear, lively, and informative
style.

Author Gary Chartrand covers the important elementary topics of graph
theory and its applications. In addition, he presents a large variety of proofs
designed to strengthen mathematical techniques and offers challenging oppor-
tunities to have fun with mathematics.

Ten major topics – profusely illustrated – include Mathematical Models,
Elementary Concepts of Graph Theory, Transportation Problems, Connection
Problems, Party Problems, Digraphs and Mathematical Models, Games and
Puzzles, Graphs and Social Psychology, Planar Graphs and Coloring Problems,
and Graphs and Other Mathematics.

A useful Appendix covers Sets, Relations, Functions, and Proofs, and a
section devoted to exercises – with answers, hints, and solutions – is especially
for anyone encountering graph theory for the first time.

Undergraduate mathematics students at every level, puzzles, and mathemat-
ical hobbyists will find well-organized coverage of the fundamentals of graph
theory in this highly readable and thoroughly enjoyable book.
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2 Automorphism

2.1 Definition

A group automorphism is an isomorphism from a group to itself. If G is a
finite multiplicative group, an automorphism of G can be described as a way
of rewriting its multiplication table without altering its pattern of repeated
elements. For example, the multiplication table of the group of 4th roots of
unity G = {1,−1, i,−i} can be written as shown above, which means that the
map defined by

1 −1 i −i
1 1 −1 i −i
−1 −1 1 −i i
i i −i −1 1
−i −i i 1 −1

is an automorphism of G.
In general, the automorphism group of an algebraic object O, like a ring or

field, is the set of isomorphisms of that object O and is denoted Aut(O). It
forms a group by composition of maps. For a fixed group G, the collection of
group automorphisms is the automorphism group Aut(G).

2.2 Properties of automorphismm graphs

An automorphism of a graph is a graph isomorphism with itself, i.e., a mapping
from the vertices of the given graph G back to vertices of G such that the
resulting graph is isomorphic with G. The set of automorphisms defines a
permutation group known as the graph’s automorphism group. For every group
Γ, there exists a graph whose automorphism group is isomorphic to Γ. The
automorphism groups of a graph characterize its symmetries and are therefore
very useful in determining certain of its properties.

The group of graph automorphisms of a graph G may be computed in the
Wolfram Language using GraphAutomorphismGroup[g], the elements of which
may then be extracted using GroupElements. A number of software implemen-
tations exist for computing graph automorphisms, including nauty by Brendan
McKay and SAUCY2, the latter of which performs several orders of magnitude
faster than other implementations based on empirical tests.

Precomputed automorphisms for many named graphs can be obtained us-
ing GraphData[graph, "Automorphisms"], and the number of automorphisms
using GraphData[graph, "Automorphism Count"].

Graph Automorphism Star:
Similarly, the star graph S4 has six automorphisms: (1, 2, 3, 4), (1, 3, 2, 4),

(2, 1, 3, 4), (2, 3, 1, 4), (3, 1, 2, 4), (3, 2, 1, 4), illustrated above. More generally, as
is clear from its symmetry: |Aut(Sn)| = (n− 1)! for n ≥ 3. Precomputed auto-
morphisms for many named graphs can be obtained using GraphData[graph,

"Automorphisms"], and the number of automorphisms using GraphData[graph,
"AutomorphismCount"].
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Graph Automorphism Grid Graph:
For example, the grid graph G2,3 has four automorphisms: (1, 2, 3, 4, 5, 6),

(2, 1, 4, 3, 6, 5), (5, 6, 3, 4, 1, 2), and (6, 5, 4, 3, 2, 1). These correspond to the graph
itself, the graph flipped left-to-right, the graph flipped up-down, and the graph
flipped left-to-right and up-down, respectively, illustrated above. More gener-
ally, as is clear from its symmetry:

|Aut(Gm,n)| =


1 for m = n = 1;

2 for m = 1 or n = 1;

4 for m ̸= n and m,n > 1;

8 for m = n > 1.

In our first example, the set VG would be the set of cities, and {ui, uj} ∈
EG if the cities represented by ui and uj were connected by a road. In the
second example, VG would be the set of people and {ui, uj} ∈ EG if the people
represented by ui and uj were friends (this is, of course, assuming that friendship
is a symmetric relation).

While these examples are very similar, there are some important potential
differences. Suppose that we are building a graph to represent cities and the
roads between them because we want to know the shortest route to drive between
any two cities. Then in this case it would be important to know how long each
of the roads is. We could then assign a weight to any given edge of our graph.
Alternatively, suppose we want to know how many ways there are to get from
one city to another. Then it would be important to know if there was more
than one direct road between two cities, or even if there was a scenic loop that
went from one city back to itself. To faithfully represent this in our graph, we
would need to allow there to be multiple edges between vertices in addition to
edges between a vertex and itself. In contrast, we consider the case of a group of
people and their friendships. It clearly does not make sense to assign a quantifier
to the friendship between any two people, nor does it make sense to have two
people be friends twice over or someone be friends with themselves. Therefore
in this case we would like to only allow our graph to have edges between two
distinct vertices, and no more than one edge per vertex pair. Such a graph is
said to be simple.

In this paper, we will only be considering simple graphs. For more informa-
tion on other kinds of graphs, see Bogart [2] or Bona [3].

One useful concept that helps us discuss graphs is as follows: the degree of
a vertex is equal to the number of edges incident at that vertex. Therefore, to
find the degree of a given vertex v ∈ VG, we must simply count the number of
edges e ∈ EG that have v as one of their two entries. Knowing the degrees of
vertices present in the graph will help to compare graphs to each other.

Just as with groups, there are a few graphs that are common
enough to have their own standard notation. The three that we will
be using in this paper are: The Complete Graph on n vertices Kn in which
every vertex is connected to all n − 1 other vertices. The Path Graph on n
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vertices Pn consists of n vertices v0, v1, v2, . . . , vn−1 and n − 2 edges, where
{vi, vi+1} = ei ∈ EPn for all 0 ≤ i ≤ n− 2.

The Cycle Graph Cn consists of the path graph Pn, but with the
extra edge {vn−1, v0}

It is only natural to want to use some of our tools from our study of Ab-
stract Algebra to understand these graphs better. We start by refining the idea
of a group automorphism defined in Definition. Definition 2.2. A graph au-
tomorphism of G is a permutation φ on the set of vertices VG that satisfies the
property that {ui, uj} ∈ EG if and only if {φ(ui), φ(uj)} ∈ EG.

Now that we have a definition of a graph automorphism that parallels Defi-
nition 1.5, it is not a stretch to wonder if the set of all graph automorphisms on
a particular graph G forms a group, as was found with group automorphisms
in Theorem 1.6. This is in fact the case.

Theorem 2.3. The set Aut(G) of all graph automorphisms of a graph G
forms a group under function composition.

The proof of this fact follows that of Theorem 1.6 almost precisely. We
also note that a graph and its complement are very similar in structure. This
leads us to believe that there might be some sort of relationship between their
automorphism groups. This turns out to be the case, as outlined in the next
theorem.

Theorem 2.4. Given any graph G, Aut(G) = Aut(G).
Proof. We will proceed by showing set inclusion in both directions.
Direction 1: Let σ ∈ Aut(G). Suppose e /∈ EG is an edge. By the definition

of the complement of a graph, e ∈ EG . Since σ is a graph automorphism,
σ(e) /∈ EG, implying σ(e) ∈ EG . Thus, σ is also an automorphism of G, and
hence σ ∈ Aut(G).

Direction 2: Let τ ∈ Aut(G). Since G is isomorphic to G, we can inter-
change G and G. Thus, if τ(e) /∈ EG for some edge e /∈ EG , then τ(e) /∈ EG,
implying τ(e) ∈ EG . Hence, τ ∈ Aut(G).

Therefore, we have shown that Aut(G) = Aut(G).
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3 Edge Transitivity

3.1 Definition

In the mathematical field of graph theory, an edge-transitive graph is a graph G
such that, given any two edges ePrecomputed automorphisms for many named
graphs can be obtained using GraphData[graph, "Automorphisms"], and the
number of automorphisms using GraphData[graph, "AutomorphismCount"].

3.2 Properties of Edge transitive graphs

• Symmetry: Edge transitive graphs exhibit a high degree of symmetry,
as any pair of edges can be transformed into one another by a graph
automorphism.

• Regularity: Edge is especially often regular, meaning that each vertex
has the same number of incident edges. However, not all edge-transitive
graphs are regular.

• Vertex transitivity:While edge transitivity does not necessarily imply ver-
tex transitivity, many edge-transitive graphs are also vertex-transitive,
meaning that for any two vertices v1 and v2, there exists an automor-
phism mapping v1 to v2.

• Cayley Graphs: Many edge transitive graphs are Cayley graphs, which
are graphs that represent the st, structure of a group.

• Classification: Edge-transitive graphs are classified based on their under-
lying structures, such as circulants, symmetric graphs and other algebraic
combinatorial structures.

3.3 Automorphism

An automorphism of a graph is a graph isomorphism with itself, i.e., a mapping
from the vertices of the given graph G back to vertices of G such that the result-
ing graph is isomorphic with G. The set of automorphisms defines a permutation
group known as the graph’s automorphism group. An edge-transitive graph is
an undirected graph in which every edge may be mapped by automorphisms to
any other edge.
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3.4 Classification of edge transitive graphs

• Circulant graph:A circulant graph is formed in a systematic way based on
a set of integers. Its edges are arranged in a circular or cyclic manner, and
the graph exhibits a regular pattern.

• Symmetric graph: a graph is symmetric if its automorphism group acts
transitively on ordered pairs of adjacent vertices (that is, upon edges con-
sidered as having a direction).

• Regular Edge-Transitive Graphs:These are graphs where every vertex has
the same number of connections automorphisand adjacent to any edge
with any other edge while maintaining the graph’s overall structure.

• Complete Graphs:In a complete graph, every pair of vertices is directly
connected by an edge. You can switch any edge with any other edge in
the graph.

• Prism Graphs:These graphs are like stacking two complete graphs on top
of each other. They maintain edge-transitivity, and you can swap edges
in a certain way.

3.5 Applications of Edge Transitive Graphs

• Network Design:In the design of communication networks, transportation
networks, and social networks, edge-transitive graphs can be used to model
and understand the symmetric distribution of connections. This can lead
to more efficient and balanced network designs.

• Error-Correcting Codes:Edge-transitive graphs are employed in coding
theory for constructing error-correcting codes. The symmetry properties
of these graphs can be exploited to design codes that can correct errors in
transmitted data.

• Group Theory and Algebraic Structures:Edge-transitive graphs are closely
related to group theory. They can be used to construct Cayley graphs,
which are graphs associated with groups. Understanding edge-transitive
graphs contributes to the study of algebraic structures and their applica-
tions.

• Random Walks and Markov Chains:The symmetry properties of edge-
transitive graphs make them useful in the analysis of random walks and
Markov chains. These graphs often provide a structured environment for
studying the properties of random processes.

• Parallel Computing:In parallel computing, edge-transitive graphs can be
used to model and design interconnection networks. The symmetry of
these graphs can lead to balanced communication patterns among proces-
sors, contributing to efficient parallel processing.
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• Graph Isomorphism Testing:Edge-transitive graphs are useful in the study
of graph isomorphism, which involves determining whether two graphs are
essentially the same. The symmetry properties of edge-transitive graphs
can simplify certain isomorphism testing procedures.

• Coding and Cryptography:The study of edge-transitive graphs plays a
role in coding theory and cryptography. Certain cryptographic protocols
and algorithms may benefit from the unique symmetries and properties
exhibited by edge-transitive graphs.

• Combinatorial Designs:Edge-transitive graphs are often involved in the
construction of combinatorial designs such as block designs and orthogonal
arrays, which have applications in experimental design and coding theory.

3.6 Open problems in edge transitivity

• Classification and Enumeration:Achieving a comprehensive classification
of all edge-transitive graphs and enumerating them systematically remains
a challenging problem. While certain families are well-understood, a com-
plete classification for all possible cases is an open question.

• Automorphism Groups:Understanding the structure and properties of the
automorphism groups of edge-transitive graphs is a challenging problem.
Characterizing the automorphism groups in a more general and systematic
way is an ongoing research direction.

• Connection with Other Graph Properties:Investigating the relationships
between edge-transitivity and other graph properties, such as chromatic
number, clique number, or girth, is an open problem. Understanding
how edge-transitivity interacts with other graph-theoretic concepts is an
ongoing research area.

• Random Graph Models:Studying the behavior of edge-transitive graphs
within various random graph models is an open problem. Understanding
the emergence of edge-transitivity in random graph processes remains an
area of exploration.

• Applications in Real-World Networks:Investigating the applicability of
edge-transitive graphs in modeling and analyzing real-world networks is
an open research direction.
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4 vertex Transitivity

4.1 Definition

Vertex transitivity is a concept in graph theory that describes a property of
graphs. A graph is said to be vertex-transitive if, for every pair of vertices in
the graph, there exists an automorphism of the graph that maps one vertex to
the other. In simpler terms, a graph is vertex-transitive if there is a symmetry
in the arrangement of vertices such that you can transform any vertex into any
other vertex by applying an automorphism.

4.2 Automorphism

An automorphism of a graph is a bijective (one-to-one and onto) function from
the set of vertices to itself, such that the edges are preserved. In other words,
if there is an edge between vertices A and B, after the automorphism, there
should still be an edge between the images of A and B.

4.3 Example:

• Consider a graph where every vertex has the same set of neighbors. If
there is an automorphism that maps any vertex to any other vertex, then
the graph is vertex-transitive.

4.4 Applications:

Vertex transitivity is a useful concept in various applications, such as net-
work analysis, chemistry (molecular graphs), and computer science (circuit
design). Understanding the symmetr y properties of a graph can provide
insights into its structure and behavior.

1. Network Routing: In communication networks, particularly in routing
algorithms, edge-transitive graphs can be advantageous. The symmetric
nature of the edges can simplify routing decisions and optimize the flow
of information.

2. Circuit Design: Edge-transitive graphs can be relevant in the design of
circuits, where the symmetry of connections between components might
be advantageous for certain applications.

3. Chemical Graph Theory: In chemistry, molecules can be represented
as graphs, where atoms are vertices and chemical bonds are edges. Edge
transitivity in these molecular graphs can provide insights into the struc-
tural symmetry of molecules.

4. Social Network Analysis: In social networks, where edges represent
relationships between individuals, edge transitivity might indicate similar
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relationship patterns between different pairs of individuals. Understand-
ing this symmetry can help in analyzing the structure of social connections.

5. Image Processing: Edge-transitive graphs can be applied in image pro-
cessing, where edges represent image features. The symmetry in the edge
structure might be useful for certain image recognition or pattern analysis
tasks.

6. Transportation Networks: Edge transitivity can be considered in trans-
portation networks, such as road or rail systems. Symmetric connectivity
between different segments of the network might influence the efficiency
of transportation routes.

7. Error Detection and Correction: In error-detection codes and com-
munication protocols, edge-transitive graphs can be employed for efficient
error correction. The symmetry in edge connections may aid in identifying
and correcting errors in the communication process.

8. Algorithm Design: When designing algorithms for graphs, considering
edge transitivity can lead to more efficient solutions. Symmetric properties
of edges might be exploited to optimize certain graph-based algorithms.

9. Wireless Sensor Networks: In the context of wireless sensor networks,
where edges represent communication links between sensors, edge transi-
tivity can impact the reliability and efficiency of data transmission.

10. Game Theory: In certain game-theoretic models represented as graphs,
edge transitivity might have implications for strategies and equilibrium
points in the game.

4.5 Formal Definition:

A graph G is vertex-transitive if, for every pair of vertices u and v in G, there
exists an automorphism ϕ of G such that ϕ(u) = v

4.6 Study and Implement Algorithms:

Research and understand algorithms for determining vertex transitivity in graphs.

Compare the performance of different algorithms on various types of graphs.

4.7 Graph Visualization:

• Develop a tool to visualize and analyze vertex transitivity in graphs.

• Allow users to input or generate graphs and visually explore their vertex-
transitive properties.

• Explore real-world applications of vertex transitivity in fields such as social
networks, transportation systems, or biological networks.
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• Investigate how vertex transitivity can be used to model and analyze these
systems.

4.8 Random Graph Generation:

• Create a program that generates random graphs with a specified level of
vertex transitivity.

• Explore the properties of these graphs and how they differ from non-
transitive graphs.

4.9 Network Robustness:

• Investigate the impact of vertex transitivity on the robustness of networks.

• Simulate attacks or failures in a network and analyze how the vertex tran-
sitivity affects the network’s ability to withstand such disruptions.

4.10 Educational Tools:

• Study how vertex transitivity relates to community structure in networks.

• Develop algorithms to identify and analyze communities in vertex-transitive
graphs.

• Create educational materials or interactive tools to help others understand
the concept of vertex transitivity and its significance in graph theory.

4.11 Challenges and Limitations :

• Algorithmic Challenges:- Developing efficient algorithms to handle ver-
tex transitivity can be complex. The specific structure of the graph and
the chosen algorithm can influence the accuracy and efficiency of the cal-
culations.
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5 Regular graph

5.1 Introduction

Graph theory is a branch of mathematics that explores the relationships be-
tween entities through interconnected nodes and edges. Regular graphs are a
fundamental concept within graph theory, playing a crucial role in various appli-
cations such as computer science, communication networks, and social sciences.
In this document, we delve into the intricacies of regular graphs, examining
their definitions, properties, and real-world applications.

5.2 Definition

A regular graph is a type of undirected graph in which each vertex has the same
degree, i.e., the same number of edges incident to it. The degree of a vertex is
the count of edges connected to it. Therefore, in a regular graph, all vertices
have identical degrees, giving the graph a certain symmetry. Regular graphs
are classified based on the degree of their vertices.

• k-Regular Graphs In a k-regular graph, each vertex has a degree of
exactly k. These graphs are particularly interesting because they exhibit
a high degree of symmetry. They are further classified into simple and
multigraphs based on whether multiple edges between the same pair of
vertices are allowed or not.

5.3 Properties

1. Uniform Degree The most defining property of regular graphs is that all
vertices have the same degree. In a k-regular graph, each vertex has ex-
actly k edges incident to it. This uniformity in degrees creates a balanced
structure.

2. Symmetry Regular graphs exhibit a high degree of symmetry. The uni-
form distribution of edges among vertices results in a graph that looks
similar from various perspectives. This symmetry can be visually appeal-
ing and is often utilized in design and network planning.

3. Edge Coloring Regular graphs have interesting properties related to edge
coloring. For example, the chromatic index of a k-regular graph is known
to be k when k is even, and k or k+1 when k is odd.

4. Cycle Structure Regular graphs often have a cyclic structure. This
is particularly true for regular graphs with an even degree, where cycles
play a significant role in the overall connectivity of the graph. The cycles
contribute to the cohesive nature of the graph.

13



5.4 Applications

1. Network Topology Communication Networks: Regular graphs are fre-
quently used to model communication networks, such as computer net-
works, where each node represents a device (like a computer or router),
and edges represent communication links. The regularity ensures a uni-
form distribution of connections, optimizing communication and reducing
bottlenecks.

2. Coding Theory Error-Correcting Codes: Regular graphs are employed
in coding theory to design error-correcting codes. The vertices represent
codewords, and edges represent potential errors that can be corrected.
The regular structure allows for efficient error detection and correction
algorithms, vital in reliable data transmission.

3. Chemistry Molecular Structure: In chemistry, regular graphs are used
to model molecular structures. Atoms are represented by vertices, and
edges correspond to chemical bonds. The regularity of such graphs reflects
the consistent valency of atoms, providing insights into the stability and
reactivity of molecules.

4. Robotics Sensor Networks: In robotics, regular graphs are employed in
the design of sensor networks. The regularity ensures that each sensor
node has a similar communication load and coverage, contributing to a
more robust and evenly distributed sensing infrastructure.

5. Computer Science Parallel Computing: Regular graphs are used in
parallel computing to model the communication and coordination between
processors. The uniform degree distribution helps in designing efficient
parallel algorithms.

5.5 Graph Theory Concepts

• Adjacency Matrix The adjacency matrix of a regular graph is a square
matrix that represents the connections between vertices. In a regular
graph, the adjacency matrix is often characterized by a constant value for
each row (or column), reflecting the regularity of the graph.

• Incidence Matrix The incidence matrix is another representation of a
graph that relates vertices to edges. In regular graphs, the incidence
matrix reflects the constant degree of each vertex.

• Cycles and Paths Regular graphs may exhibit cycles, which are closed
paths in the graph. Understanding the presence and properties of cycles
is important in analyzing the structure of regular graphs.

• Eigenvalues and Eigenvectors The eigenvalues and eigenvectors of the
adjacency matrix or Laplacian matrix of a regular graph provide important
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information about its structure. These concepts are used in spectral graph
theory to study regular graphs.

• Isomorphism Regular graphs may be isomorphic, meaning that they
have the same structure but may have different vertex labels. Under-
standing graph isomorphism can be crucial when comparing and analyzing
regular graphs.

• Automorphisms Regular graphs often have a high degree of symmetry.
The study of automorphisms, which are isomorphisms from a graph to
itself, can provide insights into the symmetries present in regular graphs.

5.6 Challenges and Open Problems

• Existence of Hamiltonian Cycles

• Spectral Gap Conjecture

• Hamiltonian Decompositions

• Graph Reconstruction

• Computational Complexity

5.7 Examples

• Complete Graphs

• Cycle Graphs

• cube Graph

• Regular Bipartite Graphs

• Kautz Graphs

• Petersen Graph

• Dodecahedral Graph
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6 Cayley graph

6.1 Introduction

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley
diagram, group diagram, or color group, is a graph that encodes the abstract
structure of a group. Its definition is suggested by Cayley s theorem (named
after Arthur Cayley) and uses a specified set of generators for the group. It
is a central tool in combinatorial and geometric group theory. The structure
and symmetry of Cayley graphs make them particularly good candidates for
constructing expander graphs. The only groups that can give planar Cayley
graphs are exactly Zn, Z2×Zn, Dn, S4, A4, and A5, as proved by Maschke (1896).
The following table lists some graphs that are undirected versions of Cayley
graphs generated by small numbers of small permutations. The group G acts
on itself by left multiplication (see Cayley’s theorem). This may be viewed as
the action of G on its Cayley graph. Explicitly, an element h ∈ G maps a vertex
g ∈ V (Γ) to the vertex hg ∈ V (Γ). The set of edges of the Cayley graph and
their color is preserved by this action: the edge (g, gs) is mapped to the edge
(h, hgs), both having color cs. In fact, all automorphisms of the colored directed
graph Γ are of this form, so that G is isomorphic to the symmetry group of Γ.

6.2 definition 1.1

We begin by giving a very brief introduction to the topic of graphs with an
emphasis on Cayley graphs, which will be the focus of all of our examples in
this section. We assume some familiarity with groups.

A graph is a pair G = (V,E) where V is a set of points called vertices and E
is a collection of vertex pairs called edges. A loop is an edge whose associated
vertices are the same.Graph contains one loop.

Graphs can also have an explicit orientation to their edges. A graph is
directed if its edges consist of ordered (rather than unordered) pairs of vertices.

One very important aspect of graphs is that they can depict relations be-
tween the elements of a group.

6.3 definition 1.2

Let G be a group and let S ⊂ G be a set of generators. A Cayley graph is a
graph where the following hold:

1. V = G and

2. given any two vertices v1, v2 ∈ V , there is an edge from v1 to v2 if and
only if v1s = v2 for some s ∈ S.

In other words, the vertices of a Cayley graph are group elements, and the
edges between them represent multiplication by group generators. The Cayley
graph of a group is not necessarily unique but depends on the choice of the
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generating set. If a group has multiple generating sets, we will specify the one
we are using.

A space is simply connected if it is path-connected and if it has a trivial
fundamental group. We propose that our simply connected covering space is
X = {[γ]}, where γ is a path in X with starting point x0. Take p : X → X to
be the function that maps [γ] to γ(1), the fixed endpoint of [γ] in X. By path-
connectedness of X, we can take any point of X to be γ(1). This implies that
p is surjective. Let U be the topology on X consisting of the path-connected
open sets U whose fundamental groups map trivially to the fundamental groups
of X.

6.4 cayley complex

The Cayley complex X of a group X is the Cayley graph of X that has a 2-cell
attached by its boundary to each loop at each vertex.

We use the notation X in this definition because the Cayley complex is a
simply connected covering space, and is thus the universal cover of X. We know
from our previous discussion that if X is the universal cover of X, then the deck
transformation group G(X) is isomorphic to π1(X).Moreover, ifH is a subgroup
of π1(X). corresponding to some covering space XH = X/H, then π1(X/H) is
isomorphic to H. With this, we can now look at a couple of concrete examples.

(1) X = Z/3Z
The graph of X in Figure 5 has three vertices and one loop that can
be based at each of them. Thus, we see that the Cayley complex X˜ is
three disks (two-cells) glued to each other on top of the graph. The deck
transformation group of X˜ is Z/3Z. It acts on the disks in X˜ by rotations

2πn
3 .
(2) X = D4
Consider the subgroup of D4 generated by 90 degree rotations of the
square, or 1, x, x2
, x3. This subgroup is isomorphic to Z/4Z, and we will
refer to it as such. Looking at the graph of X in Figure 5, quotienting
X˜ by Z/4Z shrinks down the inner and outer squares of the graph whose
sides correspond to multiplications by x and deletes the three “petals”
corresponding to multiplications by y that are not attached to e. Thus, X/˜

Z/4Z is the above graph Z/2Z with four 2-cells attached. This
is the covering space of Z/4Z . The fundamental group of this new complex
is exactly Z/4Z.

6.5 Cayley Graphs as Topological Spaces

We are ready to perform some computations. We will take the Cayley graphs
and apply the topological theory we developed through the construction of Cay-
ley complexes. Our emphasis here will not be on rigor but on gaining insight
into the algebraic properties of the groups encoded by these Cayley graphs. We
begin with some new terminology.
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6.6 definition 1.1

An n-dimensional open cell, or n-cell, is a topological space homeomorphic to
the n-dimensional open ball. For our purposes, all that is necessary to know
about n-cells is that a 0-cell is a point, a 1-cell is a line segment, and a 2-cell is
a polygon. We can “glue” together these cells to build a new topological space.

6.6.1 Deck Transformations

Building on the covering space theory we have been developing, we now present
a final technique for computing fundamental groups of spaces. Once again, we
assume some knowledge of groups.

Deck transformations can be thought of as “shufflings” of different covering
spaces X̃, where the spaces are analogous to cards in a deck. This general idea
is depicted in Figure 5. One can check that the set of deck transformations
of a covering space under composition is a group, which we will denote by
G(X̃). We have actually already dealt with deck transformations in the previous
section, when we defined what it meant for two covering spaces to be isomorphic.
Theorem 1 Let p,X, X̃, andH be defined as in Proposition 2.17. If X̃ is a regular
covering space of (X,x0), then G(X̃) is isomorphic to π1(X,x0)/H. It follows
immediately that if X̃ is the universal cover of X, then G(X̃) is isomorphic to
π1(X). As G is a group, we can discuss the group actions of G on X̃.

Let Y be a space acted on by a group G. Actions of G are called covering
space actions if each y ∈ Y is contained by a neighborhood U for which g1(U)∩
g2(U) ̸= ∅ implies g1 = g2.

Let G be a group whose elements are covering space actions on a space
Y . If Y is path-connected and locally path-connected, then G is isomorphic to
π1(Y/G)/(p∗(π1(Y ))).

A covering space p : X̃ → X is regular if for each x ∈ X and each pair of
lifts x̃, x̃0 of x, there is a deck transformation τ : X̃ → X̃ such that τ(x̃) = x̃0.

In other words, the lifts of an evenly covered point to a regular covering
space differ by deck transformations. This next proposition gives another way
of precisely identifying regular covering spaces.Therefore its proved.
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7 Conclusion

In conclusion, the symmetry of a graph can provide valuable insights into its
structure and behavior. Symmetrical graphs often exhibit certain patterns and
properties that can aid in analysis and problem-solving. Identifying symmetries
can help simplify complex graphs and reveal underlying relationships between
vertices and edges. Additionally, symmetrical graphs are often visually appeal-
ing and can be easier to interpret. However, not all graphs possess symmetrical
properties, and the presence or absence of symmetry depends on various factors
such as the graph’s topology, connectivity, and degree distribution. Overall,
understanding symmetry in graphs is essential for both theoretical studies and
practical applications in fields such as mathematics, computer science, and net-
work analysis.

By identifying and exploiting symmetry, mathematicians and scientists can
simplify complex problems and uncover underlying patterns and relationships
within graphs. Additionally, symmetry plays a crucial role in the aesthetic
appeal of graphs and other visual representations, enhancing their clarity and
comprehensibility. Overall, the study of symmetry in graphs enriches our un-
derstanding of mathematical concepts and their applications across various dis-
ciplines.
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