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Introduction

The concept of positive definite matrices emerged in the 19th century alongside

the development of quadratic forms and the theory of symmetric matrices.

The German mathematician Carl Friedrich Gauss made significant contributions

to the study of positive definite forms.

Positive definite and positive semidefinite matrices became foundational

concepts in modern mathematics, with applications spanning various disciplines,

including computer science, machine learning, and statistics.
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Basic Definitions

Definition
An Eigenvector of n × n matrix A is a nonzero vector x such that Ax = λx for some

scalar λ. A scalar λ is called an Eigenvector value of A if there is nontrivial solution x

of Ax = λx such that x is called an Eigenvector corresponding to λ.

Definition
The spectrum of A∈Mn is the set of all λ∈C that are Eigenvalues of A, we denote this

set by σ(A).
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Positive Definite and Semidefinite Matrices

Definition
A Hermitian matrix A ∈ Mn is said to be positive definite if

x∗Ax > 0 for all nonzero x ∈ Cn

it is positive semidefinite if

x∗Ax ≥ 0 for all nonzero x ∈ Cn

Example

Let A =

1 1

1 1

. Where A is positive semidefinite but not positive definite.
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Theorem
Each eigenvalue of a positive definite (respectively, positive semidefinite) matrix is a

positive (respectively, nonnegative) real number.

Proof.
Let A be a positive definite matrix for any x ̸= 0. Suppose Av = λv.Then we get,

vTAv = λvTv. Since A is positive definite, vTAv > 0. Also, since vTv = ∥v∥2 > 0 ,

v ̸= 0, it follows that λ = vT Av
vT v is positive. Hence, the proof.

Corollary

A Hermitian matrix A is positive definite if and only if it is ∗congruent to the identity.
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Proof.
If A is positive definite,then there exists a matrix P such that A = P∗P. Choose a

matrix Q such that A = Q∗IQ. Consider Q = P−1 then,

Q∗IQ = (P−1)∗IP−1 = P∗−1IP−1 = I

Therefore, A is congruent to I.

Conversly,

If A is congruent to I, then there exists a nonsingular matrix Q such that

A = Q∗IQ = Q∗Q. Since Q is nonsingular, it is invertible.

Let P = Q−1. Then,

A = Q∗Q = (Q−1)∗Q∗Q = (Q∗)−1Q∗Q = (Q∗Q)−1Q∗Q = A−1A = I

Since A = I which implies that A is positive definite.
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The Schur Product Theorem

Definition

If A = [aij] ∈ Mm,n and B = [bij] ∈ Mm,n, then the Hadamard product (Schur product)

of A and B is the entrywise product matrix A ◦ B = [aijbij] ∈ Mm,n.

Example

Let A and B two positive semidefinite matrices in R2×2.

A =

2 1

1 3

 and B =

4 0

0 5


Then,

A ◦ B =

2 1

1 3

 ◦

4 0

0 5

 =

8 0

0 15
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Theorem
Schur Product Theorem: Suppose A and B are positive semidefinite matrices of

size n. Then A ◦ B is also positive semidefinite.

Proof.

Consider the quadratic form xT(A ◦ B)x, where x ̸= 0. Then we get,

xT(A ◦ B)x =
n∑

i=1

n∑
j=1

(A ◦ B)ijxixj

=

n∑
i=1

n∑
j=1

aijbijxixj

So aijxixj and bijxixj are both non-negative. Therefore, their product aijbijxixj is also

non-negative. Thus, xT(A ◦ B)x is non-negative. Therefore, A ◦ B is positive

semidefinite.
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The Loewner Partial Order

Definition
The Loewner order is a partial order on the set of positive semidefinite symmetric

matrices. For two positive semidefinite matrices A and B, we write A ≽ B to denote

that A − B is positive semidefinite (and symmetric), and A ≻ B to denote that A − B is

positive definite.

Theorem
Let A,B ∈ Mn be Hermitian and let S ∈ Mn,m. Then

(a) if A ≻ B, then S∗AS ≻ S∗BS,

(b) if rank(S) = m, then A ≻ B implies S∗AS ≻ S∗BS.
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Let A,B ∈ Mn be Hermitian and let S ∈ Mn,m. Then

(a) if A ≻ B, then S∗AS ≻ S∗BS,

(b) if rank(S) = m, then A ≻ B implies S∗AS ≻ S∗BS.
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Proof.
Let A,B ∈ Mn be Hermitian and let S ∈ Mn,m.

(a) Assume that A ≻ B. Consider S∗AS − S∗BS.

We have, S∗AS − S∗BS = S∗(A − B)S

Since A − B ≻ 0 and S∗ is Hermitian.

Therefore S∗AS ≻ S∗BS.

(b)Assume that rank(S) = m.

If rank(S) = m, let A ≻ B .

consider S∗AS − S∗BS.

We have, S∗AS − S∗BS = S∗(A − B)S

Since A − B ≻ 0 and S has full column rank.

Therefore S∗AS ≻ S∗BS.
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Conclusion

Positive definite and semidefinite matrices are essential mathematical constructs with

diverse applications across different domains. They provide fundamental tools for

understanding the geometry of vector spaces, ensuring the existence and uniqueness

of solutions to problems, and optimizing various objective functions in both

theoretical and practical settings.

228019 12 May 20, 2024



References

Horn,R.A., Johnson,C.R.(1985, 2013). Matrix Analysis, 2nd ed. New York, NY

10013-2473,USA

Lewis,D.W.(1991). Matrix Theory, World Scientific Publishing Co,Pte.Ltd,

Singapore

Kanti Bhushan Datta.(2012).Matrix and Linear Algebra, 2nd ed(revised), PHI

Learning Private Limited, New Delhi

Aitken, A. C. 1956. Determinants and Matrices. 9th ed. Oliver and Boyd,

Edinburgh.

Bhatia, R. 2007. Positive Definite Matrices. Princeton University Press,

Princeton.

228019 13 May 20, 2024



Thank You

228019 14 May 20, 2024


	References

